

PHASE 2 GROUND WATER STUDY

TRONOX NAUM AMBROSIA LAKE AREA – SAN MATEO CREEK BASIN LEGACY URANIUM SITE

TRONOX Quarterly Meeting
October 25, 2017
Albuquerque, NM

MULTI-PHASED GROUND WATER INVESTIGATION

Phase 1

Alluvial Aquifer San Mateo Creek Basin 2012 – 2016

Phase 2

Bedrock & Alluvial Aquifers
San Mateo Creek Basin

Refine Conceptual Site Model 2015 – 2018

PHASE 2 STUDY OBJECTIVES

- ASSESS GROUND WATER IMPACTS FROM TRONOX MINES AND OTHER WET MINES
 - o Former Kerr-McGee Mines
 - Primarily located in NAUM Ambrosia Lake Impact Area
 - Within San Mateo Creek Basin
- EXPAND ON 2015 PHASE 1 INVESTIGATION OF ALLUVIUM
- ASSESS BEDROCK AQUIFERS
- REFINE CONCEPTUAL SITE MODEL

SITE MAP

Draft – For Discussion Purposes Only

MAJOR PHASE 2 COMPONENTS

EPA CONTRACTOR WESTON SOLUTIONS

FIELD INVESTIGATION DRILLING, WELL CONSTRUCTION,

AND SAMPLING

ASSESSMENT OF GROUND WATER SAMPLE RESULTS

GEOCHEMISTRY ENVIRONMENTAL FORENSICS

HYDROGEOLOGY & MINE WATER DISCHARGE **IMPACT ANALYSIS**

EPA MARK PURCELL **ASHLEY CHANG** **SUB CONTRACTOR EARLE DIXON** McGinnis and Associates

PHASE 2 REPORT DRAFT OUTLINE

TABLE OF CONTENTS

EXECUTIVE SUMMARY

INTRODUCTION

BACKGROUND

SUMMARY OF IMPACTS FROM FORMER URANIUM MILLS

LEGACY MINE DISCHARGE WATER ★

PHYSICAL SITE CHARACTERISTICS

FIELD INVESTIGATION

RESULTS

GEOCHEMISTRY

LEGACY MINE DISCHARGE WATER IMPACT ANALYSIS

DISCUSSION

CONCLUSIONS

CONCEPTUAL SITE GROUND WATER MODEL

STRATIGRAPHIC COLUMN Age Formation Lithelegy Thickness Send Stee Dakota S.S. 60-165 Reyells for 35-130 Member Westwater Canyon 110-190 3394270 Member 19123 Recapture 130-245 Member 308076 Bluff 110-125 Sandstone Legend 140-170 Formation 25-35 Ore-Bearing Zone Upper SS 135-140 Member 45-50 Alluvial Deposits Medial Sity Memb BUSINESS Wingate Sandstone 120 Basaltic Flows Claystone 330 Upper Member Correo SS Member 75 35-110 Limestone Rhyolltle Tuff 1104393 400 Middle Member Sandstone with Shale Interbeds 113-125 Upper Triassic Sandstone 115-145 -Petrified Forest 290 Slitstone with Limestone Interbeds Petrilled Forest 400-500 SEMS |D; NMN000606847 Sonsela SS Bed TDD NO: 0009/WESTON-042-17-029-001 lead If the **USEPA REGION 6** 95-170 San Andres Limestone e delle Hees Permian FIGURE 4-15 STRATIGRAPHIC COLUMN TRONOX NAUM Glorietta Sandstone SAN MATEO CREEK BASIN Draft – For Discussion Purposes Only

SUMMARY OF IMPACTS FROM FORMER MILLS

- REGULATED BY U.S. NUCLEAR REGULATORY COMMISSION
 - Reclamation
 - Decommissioning and Closure
 - Ground Water Restoration

Long-Term Custody and Care

- FOUR MILLING AND TAILING DISPOSAL FACILITIES
 - RIO ALGOM AMBROSIA LAKE FACILITY
 - O DOE AMBROSIA LAKE DISPOSAL FACILITY (FORMER PHILLIPS MILL) Title I Site
 - O DOE BLUEWATER DISPOSAL SITE
 - HOMESTAKE MINING COMPANY NPL SITE

ALTERNATE CONCENTRATION LIMITS (ACLs)

- UNDER UMTRCA, NRC HAS AUTHORITY TO CONTROLS HAZARDS AT TITLE II SITES
 - Implementation of Standards for Protection of Human Health/Environment
 - Ground Water Protection Standards Established by EPA at 40 CFR Part 192
- CONCENTRATION LIMITS (STANDARDS) ESTABLISHED IN SITE LICENSE
- NRC MAY ESTABLISH AN ACL THAT IS LESS RESTRICTIVE THAN STANDARD
 - When GWPS or Background are not practically achievable
 - ACL Must Be As Low As Reasonably Achievable (ALARA)
 - ACL Must Be Protective of Human Health and Environment

MILL IMPACTS TO GROUND WATER

LEGEND

- Impacted by
 Mill and Mine
 Discharge Water
- ImpactedTre Hermanos BWell
- Impacted DakotaWell

MAJOR HYDROSTRATIGRAPHIC UNITS

- ALLUVIUM
- ALLUVIUM BEDROCK MIX
- BEDROCK
 - Dakota Sandstone
 - Morrison Formation (Westwater Canyon Member Ore Bearing Zone)
 - Chinle Formation
 - San Andres Limestone Glorietta Sandstone (SAG) Formations

ALLUVIUM

- BASIN-WIDE SATURATION
- BASIN-WIDE GROUND WATER FLOW DIRECTION
- AMBROSIA LAKE AREA FLOW DIRECTION
- WATER QUALITY

D

HYDROGEOLOGIC CROSS-SECTION

SOUTH

DAKOTA SANDSTONE AQUIFER

- SATURATION
- GROUND WATER FLOW DIRECTION
- WATER QUALITY
- DETAILED CROSS-ROADS AREA

GEOLOGIC CROSS SECTION A-A'

A

San Mateo Fault Zone

GEOCHEMISTRY – ENVIRONMENTAL FORENSICS

- SYSTEMATIC INVESTIGATION OF WATER TYPES
 - Major Ions (Cations and Anions)
 - Trilinear Diagrams
 - Classify Water Ion Composition
 - Stiff Diagrams
 - Presents Ion Concentration Data as Graphic Shapes
 - Ion to Ion Relationships
 - Uranium Activity Ratios
 - Stable Isotopes Oxygen, Hydrogen, Sulfur, Carbon
 - Use as Tracer or Fingerprint to Source
- MULTIPLE LINES OF EVIDENCE

Mine Discharge **Water** is primarily from Morrison Fm (Ore Zone) and Overlying Dakota Sandstone Formation (Drained into Morrison Fm)

GEOCHEMISTRY

- ASSESS WATER TYPES OF THREE MAJOR HYDROSTRATIGRAPHIC UNITS
 - Alluvium
 - Alluvium Bedrock Mix
 - Bedrock
- IDENTIFIED BASED ON GEOCHEMISTRY

USGS TRILINEAR (PIPER) DIAGRAM

Upper San Mateo Creek Basin Study

Assessment of Ion Composition

Draft – For Discussion Purposes Only

PHASE 2 TRILINEAR (PIPER) DIAGRAM

Alluvium and Alluvium – Bedrock Mix

ALLUVIAL WATER WITH MORRISON FM MAJOR ION COMPOSITION

PHASE 2
TRILINEAR (PIPER)
DIAGRAM

Bedrock

URANIUM ACTIVITY RATIO (UAR)

- U-234/U-238 RATIO
- DISTINGUISH BETWEEN MILL/MINE URANIUM CONTAMINATION AND NATURALLY OCCURRING BACKGROUND
 - U-234 AND U-238 Reach Secular Equilibrium in Closed System (Rock)
 - U-234 Production from U-238 Decay = U-234 Loss through Decay
 - UAR = 1.0
 - U-234 Preferentially Released in Ground Water
 - Caused by Disruption of crystalline structure
 - Elevates UAR Values in most natural ground waters
- UAR VALUES > 1.5 = BACKGROUND
- UAR VALUES < 1.35 = URANIUM MINE OR MILL SOURCE

δ34S ISOTOPE

- ISOTOPIC COMPOSITION OF SULFUR (δ34S) IS KNOWN
 - For Global, Regional and Local Sources
 - Sulfate Minerals (Gypsum, Anhydrite)
 - Sedimentary Sulfides (Pyrite)
 - ✓ Sandstone-Type Uranium Deposits in Colorado and Grants Area
- USED AS TRACER OR FINGERPRINT TO SOURCE OF SULFATE

SULFUR ISOTOPE ASSESSMENT

∂³⁴S concentration in ‰ versus SO₄ concentration in mg/L, P2 groundwater samples, San Mateo Creek Basin, New Mexico

LEGACY MINE DISCHARGE WATER IMPACTS

- MAP CHANGES IN WATER LEVELS OVER TIME
 - Identify Physical Presence of Mine Discharge Water
- MAP CHANGES IN WATER QUALITY OVER TIME
 - Plume Maps for Key Constituents
- TEMPORAL PLOTS OF CONSTITUENT CONCENTRATIONS
 - Look for Upward Trends

TARGET
LOWER SAN
MATEO CREEK
BASIN

Homestake Well 920 (SMC-11) Uranium-Time Trend Plot

WELL R TEMPORAL PLOTS OF CONSTITUENTS CONCENTRATIONS

WELL DD TEMPORAL PLOTS OF CONSTITUENT CONCENTRATIONS

HISTORICALLY HIGH URANIUM (Since Monitoring Began in 1976)

POSSIBLE SURFACE WATER FLOW PATH FOR EARLY URANIUM

△ SPREADER DAMS FOR CATTLE FORAGE

POSSIBLE EARLY
MINE DISCHARGE WATER
IMPACTS TO GROUND
WATER FROM SURFACE
WATER PATHWAY (PRE1976)?

DRAFT PHASE 2 REPORT NEAR COMPLETION

- DISCUSSION AND CONCLUSION SECTIONS
 YET TO BE WRITTEN
- MUST LOOK AT MULTIPLE LINES OF EVIDENCE TO SUPPORT FINDINGS AND CONCLUSIONS
 - Individual Lines of Evidence May Not be Conclusive

REPORT COMPLETION SCHEDULE – 2017/2018

OTHER SLIDES

STIFF NKD-06 5000 10000 meters **DIAGRAMS** BEDROCK SMC-24 PV-03 SAG-PV Alluvium SAG-01 Alluvium-Bedrock Mix PV-01 928 Na-diss+K-diss 25 ALKB+ALKC Ca-diss **LSM-47** 943 Mg-diss SO4 **Draft – For Discussion LSM-60**

Purposes Only

